
Level 0 Level 1 Level 2 Level 3

PROG-
masters

level

Computer Science

data structures Doesn’t know the difference between
Array and LinkedList

Able to explain and use Arrays,
LinkedLists, Dictionaries etc in practi-
cal programming tasks

Knows space and time tradeoffs of
the basic data structures, Arrays vs
LinkedLists, Able to explain how
hashtables can be implemented and
can handle collisions, Priority queues
and ways to implement them etc.

Knowledge of advanced data struc-
tures like B-trees, binomial and fibo-
nacci heaps, AVL/Red Black trees,
Splay Trees, Skip Lists, tries etc.

1

algorithms Unable to find the average of numbers
in an array (It’s hard to believe but I’ve
interviewed such candidates)

Basic sorting, searching and data
structure traversal and retrieval al-
gorithms

Tree, Graph, simple greedy and divide
and conquer algorithms, is able to
understand the relevance of the levels
of this matrix.

Able to recognize and code dynamic
programming solutions, good knowl-
edge of graph algorithms, good
knowledge of numerical computation
algorithms, able to identify NP prob-
lems etc.

1,5

Software Engineering

version Control System 1 Doesn’t know about version control
system so does not use it.
Files are not tracked in version control.

Basic use of version control system.
All team members push to the
main branch.

Good use of VCS and
it’s features. Team members
do feature/task level branching
with pull requests being a
commonplace.

Advanced use of VCS and leverages
most of it’s features in addition to
branching and merging. For example
git bisect if using git.

1,5

automated testing Does not write any form of automated
tests. Relies fully on manual testing if
any testing is done.

Has written automated unit tests and
comes up with good unit test cases for
the code that is being written

Has unit and/or integration tests in
place. May have functional tests too.
Has written code in TDD manner

Understands and is able to setup auto-
mated functional, load/performance
and UI tests. Tests are like a first line of
defense for catching bugs and tracing
requirements.

2

database Thinks that Excel is a database Knows basic database concepts,
normalization, ACID, transactions and
can write simple selects

Able to design good and normalized
database schemas keeping in mind
the queries that’ll have to be run, pro-
ficient in use of views, stored proce-
dures, triggers and user defined types.
Knows difference between clustered
and non-clustered indexes. Proficient
in use of ORM tools.

Can do basic database administra-
tion, performance optimization, index
optimization, write advanced select
queries, able to replace cursor usage
with relational sql, understands how
data is stored internally, understands
how indexes are stored internally,
understands how databases can be
mirrored, replicated etc. Understands
how the two phase commit works.

1

Programming

problem decomposition Only straight line code with copy paste
for reuse

Able to break up problem into multiple
functions

Able to come up with reusable func-
tions/objects that solve the overall
problem

Use of appropriate data structures
and algorithms and comes up with
generic/object-oriented code that
encapsulate aspects of the problem
that are subject to change.

2,5

code organization within
a file

no evidence of organization within
a file

Methods are grouped logically or by
accessibility

Code is grouped into sections and
well formed

File has license header, summary, well
commented, consistent white space
usage. The file should look beautiful.

2

code readability Mono-syllable names Good names for files, variables class-
es, methods etc.

No long functions, comments explain-
ing unusual code, bug fixes, code
assumptions

Code assumptions are verified us-
ing asserts, code flows naturally
– no deep nesting of conditionals or
methods

2

error handling Only codes the happy case Basic error handling around code that
can throw exceptions/generate errors

Ensures that error/exceptions leave
program in good state, resources,
connections and memory is all
cleaned up properly

Codes to detect possible exception
before, maintain consistent exception
handling strategy in all layers of code,
come up with guidelines on exception
handling for entire system.

1,5

refactoring and rewrite Never allocates times for any refactor-
ing and/or rewrite. Just make it work
mentality prevails in the team.

Manages time for some code
refactoring and has a mentality
to leave the code better than it was.
Does not allocate time for rewrite.

Refactoring and rewrite are priorities.
Allocates and uses time to refactor low
performing and badly written parts.
Manages time to rewrite parts which
are old and causing problems.

Refactoring and rewrite is
ingrained in the process. Doing a
rewrite of old components/parts
is taken as an opportunity.

1,5

Security

App level 2 Is reluctant to take any measures
against app level security.

Is aware of application level security
vulnerability still fixes them slowly as it
comes to priority late

As and when informed about any
application level security vulnerabil-
ity fixes the issues in an acceptable
amount of time.

Actively looks for any application level
vulnerability in the code and makes
 fixing security vulnerability a
high priority fixing it very fast.

1,5

Tools

project management
software 3

Does not use any
project management software.

Uses project management
software but partially and
with less planning.

Takes advantage of a
good project management
software with roadmap,
plans and other artifacts in place.

Takes the most advantage out of the
project management software uses
it to track progress and extract useful
reports out of the software.

2

IDE Mostly uses IDE for text editing Knows their way around the interface,
able to effectively use the IDE using
menus.

Knows keyboard shortcuts for most
used operations.

Has written custom macros 2

Soft Skills

communication 4 Cannot express thoughts/ideas to
peers. Poor spelling and grammar.

Peers can understand what is being
said. Good spelling and grammar.

Is able to effectively communicate
with peers

Able to understand and communicate
thoughts/design/ideas/specs in a
unambiguous manner and adjusts
communication as per the context

2

Levels of developers

1 Git is the most popular distributed VCS. This section also covers the use of VCS management software like Github. etc. | 2 Application level vulnerability like SQL injection, CSRF, cross site 1scripting or even wrong ACL, misconfigured
settings etc. | 3 Jira is one of the popular project management software with good reporting capabilities. | 4 This is an often under rated but very critical criteria for judging a programmer. With the increase in outsourcing of programming
tasks to places where English is not the native tongue this issue has become more prominent. I know of several projects that failed because the programmers could not understand what the intent of the communication was.

